Tetrahedron Letters No. 33, pp 3101 - 3102. © Pergamon Press Ltd. 1979. Printed in Great Britain.

1

0040-4039/79/0808-3101\$02.00/0

AN EASY ROUTE TO SOME α - AND β - ALLENIC ALCOHOLS VIA ORGANOCOPPER(I) INDUCED 1,3- SUBSTITUTION IN PROPARGYLIC METHANESULFINATES .

H.Kleijn , C.J.Elsevier , H.Westmijze , J.Meijer and P.Vermeer .

Department for Organic Chemistry , State University , Croesestraat 79 , The Netherlands .

Recently ¹ we reported on the efficient synthesis of various alkyl and aryl substituted allenic hydrocarbons <u>3</u> by interacting propargylic methanesulfinates <u>1</u> with organocopper(I) compounds of type <u>2</u> (eq. 1). Homocuprates , R₂CuMgX.LiBr, could not be used for the conversion of <u>1</u> into <u>3</u> as these reagents also attacked the sulfur atom in <u>1</u>.

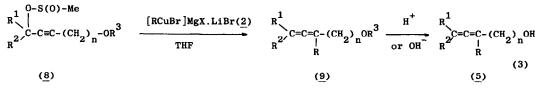
$$R^{1}_{R^{2}} \xrightarrow{C-C=C-R^{3}}_{\substack{0\\0-S-Me\\0\\0}} + [RCuBr]MgX.LiBr \xrightarrow{THF} R^{1}_{R^{2}}C=C=CRR^{3} (1)$$

$$(1) \qquad (2) \qquad (3)$$

$$R^{1},R^{2} \text{ and } R^{3} : H , alkyl \text{ or aryl}$$

$$R \qquad : alkyl \text{ or aryl}$$

$$X \qquad : Cl \text{ or Br}$$


The present work concerns the application of the reaction principle of eq. 1 for the synthesis of a number of α - and β - allenic alcohols. Some years ago ² α - and β - allenic alcohols were prepared by copper(I) halide promoted 1,3-substitution in substrates of type <u>4</u>, but in most cases the produced α - and β - allenic alcohols <u>5</u> were contaminated with substantial amounts of compounds 6 and / or 7 (eq. 2):

$$\begin{array}{c} OR^{2} \\ \downarrow C \\ -C \equiv C - (CH_{2})_{n}OH \\ (4) \\ n = 1 \text{ or } 2 \\ R^{1} = 2 - \text{tetrahydropyranyl or Me} \end{array}$$

$$\begin{array}{c} RMgX \\ cat.Cu^{T}I \\ R \\ \hline \\ C \equiv C = C \\ cat.Cu^{T}I \\ R \\ \hline \\ C \equiv C = C \\ R \\ \hline \\ C \equiv C = C \\ R \\ \hline \\ C \equiv C = C \\ R \\ \hline \\ C \equiv C = C \\ CH_{2})_{n}OH \\ R \\ \hline \\ C \equiv C = C - (CH_{2})_{n}OH \\ R \\ \hline \\ C \equiv C = C - (CH_{2})_{n}OH \\ H \\ \hline \\ (7) \\ \hline \end{array}$$

In this paper we shall show that pure α - and β - allenic alcohols 5 are easily accessible viaa route similar to the one depicted in equation 1 (see eq. 3)³. Thus reaction of the hydroxy protected methanesulfinates <u>8</u> (0.030 mol) with the organobromocuprates <u>2</u> (0.030 mol, R = alkyl or aryl)⁴ in dry tetrahydrofuran (THF, 100 ml)

for 15 min.at -50° C followed by allowing the reaction temperature to rise to $+20^{\circ}$ C and subsequent aqueous work-up (cf¹), furnished in all cases allenes 9a-f in excellent yields (>90%). Without further purification allenes 9 were deprotected to yield pure α - and β -allenic alcohols 5 by treating with p-toluenesulfonic acid in methanol (R^3 = EtOCH(Me)- ; <u>9a-d =5a-d</u>) or with sodium hydroxide in aqueous methanol ($R^3 = Me_3Si - ; 9e - f \Rightarrow 5e - f$)⁵. The table summarizes the results .

In contrast with the reaction of <u>8</u> $(R^1, R^2 = -(CH_2)_4^-$, $R^3 = Me_3Si$, n = 1) with phenylbromocuprate (<u>2</u>; R = Ph,X = Br) a non-selective reaction was observed when the same copper(I) compound was reacted with MeS(0)0-CH₂-C=C-CH₂OR³ ($\underline{8}$;R³ = EtOCH(Me)-). In this case the desired allene $H_2C=C=C(Ph)CH_2OR^3$ and $PhCH_2C=C-CH_2OR^3$ were obtained in a ratio 35:65. This ratio was improved up to 90 : 10 when the corresponding tosylate $p-CH_3-C_6H_4SO_2OCH_2C=C-CH_2OR^3$ was reacted with the cuprate but hitherto no conditions have been found under which the allene was free from the isomeric product. For most purposes , however , the presented method will be suitable .

Starting compound $\frac{8}{8}^{6}$				Cuprate 2		Product ^a	B.p.	20	Yield ^b
R ¹	R ²	R ³	n	R	x	5	^o C/mmHg	n D	(%)
H	Н	EtOCH(Me)	1	Et	Br	<u>5</u> a	67-68/25	1.4753	60
H	Н	EtOCH(Me)	1	<u>t</u> -Bu	C1	<u>5</u> b	74-75/22	1.4721	73
Pr	н	EtOCH(Me)	2	Me	C1	<u>5</u> c	91-93/17	1.4748	77
Pr	н	EtOCH(Me)	2	Et	Br	<u>5</u> d	106-108/18	1.4737	75
- (CH	2^{4}	Me ₃ Si	1	Me	C1	<u>5</u> e	110-112/10	1.5111	70
- (CH		Me3 ^{Si}	1	Ph	Br	<u>5</u> f	80-81(m.p.)	-	90

a) Purity of 5 : >95% (based on ¹H NMR,IR and GLC analysis) b) Yields refer to distilled products and are calculated on the starting compound 8 .

References and notes.

- 1. P.Vermeer, H.Westmijze, H.Kleijn and L.A.van Dijck, Recl. Trav. Chim. Pays-Bas, 97, 56 (1978).
- 2. A.Claesson, L.Tamnefors and L.I.Olsson, Tetrahedron Lett., 1975, 1509.
- 3. The preparation of Q-allenic alcohols from acetylenic oxiranes and organocopper(I) compounds has also been described: P.R.Ortiz de Montellano, Chem. Comm., 1973, 709; P.Vermeer, J.Meijer, C.de Graaf and H.Schreurs , Recl.Trav.Chim.Pays-Bas , 93 , 46 (1974).
- 4. The cuprates 2 were prepared as indicated in ref. 1 .
- 5. When in these cases for R^3 EtoCH(Me)- was used , tarry products and presumably the spiro compound (yield : 30 %) were obtained upon acidic deprotection . 6. Compounds 8 were prepared from $R^1R^2C(OH)-C=C-(CH_2)_nOR^3$ and $CH_3S(O)C1$ according to ref. 1.